加熱09 スケールはどうして発生するのですか？

スケールとは、鋼を570℃以上に加熱すると空気中の酸素と結合し、鉄酸化物をつくる現象によって生成された被膜をいいます。

スケールは、650℃付近から発生し始め、900℃以上になると急激に厚さが増加しますが、加熱温度の影響も大きく、高温での保持時間と共にスケールの厚さも増えてきます。

スケールは、3層から生成されており、母材側からFeO（酸化鉄）、Fe₃O₄（四酸化鉄）、Fe₂O₃（酸化第二鉄）の構造になっています。

スケールの発生を防ぐためには、酸化雰囲気や水量のあるような雰囲気での加熱は避け、且つ加熱時間短くすることが重要です。

誘導加熱では、コイル内にN₂ガスなどの不活性ガスを注入したり、燃焼炉では、炉内の圧力を高めることで酸素の流入を防ぎ、コイル内や炉内を選元性雰囲気化することでスケールの発生を防止している例もあります。

図 加熱温度とスケールの厚さの関係

加熱10 スケールが発生するとどんな影響があるのですか？

スケールは鋼と空気中の酸素が結合し酸化被膜をつくるので、被膜に養われただけ質量が減少します。これを「焼減」といいます。

密閉観察の場合、焼減があると欠肉や厚み寸法マインスになる恐れがあります。また、スケールを除去しないまま観察すると、観察でスケールが打ち込まれ、観察品の変形を招くことにより欠肉の欠陥となります。

さらに、スケールは非常に硬く、金型寿命の低下や焼付けの原因になりやすいので、観察前には、必ずスケール除去を行うことが必要です。

加熱11 再加熱材（リヒト材）を使用するときの注意点は何ですか？

再加熱材を行う際、調整や設備トラブル等で型打ちできなかったり、再加熱加熱で加熱時間に不都合を伴っているとは、一度加熱された材料を再利用する場合の問題を再加熱材（リヒト材）といいます。

材料は、一度加熱焼結温度域まで加熱すると、
①表面にスケールが発生し、材料の質量が減少します（焼減）。
②スケールが付着したまま再加熱すると、再加熱中に局部的に脱落したスケールが堆積し、炉床や坩堝を傷めます。再加熱前にショットブラスト等でスケール除去を行うことも必要です。
③表面に焼結層が生じ、放熱性の低下や使用に対する硬さが確保できないこと。
④組織が粗大化し、機械的強度低下、組織が粗大化し、強度が低下します。

これらのことを考慮し、材質の変更要求や設備能力に応じて、再加熱温度を制限することが必要です。また、直に再加熱するとき、オーバーヒートを避けるため、材料温度を室温まで下げてから再加熱に投入します。加熱された材料を冷却するときは、高温で急冷すると効率を気にするため、0℃程度まで徐冷または空冷し、その後は水冷しても問題ありません。

再加熱加熱から出荷される材料は、落下等により表面に打つきが付着している可能性があります。これが、観察材に製品の欠陥になってしまうこともあるので注意が必要です。

写真 断面がきれいな材料 → リヒト材になる

加熱12 加熱の際の焼減はどのくらい見込むのですか？

焼減は、スケールとなって剥がれた部分質量に相当します。これは、加熱方法、時間、材質、炉内の雰囲気によってスケールの付着量が異なるので、見込み量は大体にいえませんが、一般的に、誘導加熱で1200℃に加熱した材料の質量で約1%、燃焼炉で約3%程度見込みます。

スケールの発生は、600～700℃付近で急激に増加し、900℃を超えると急激に厚くなります。また、加熱時間が長いと、どんどん厚くなります。

炉内の雰囲気や酸化性ではスケールは厚く、還元性をすることで発生を抑制できます。リヒト材を再度リヒトするとそのたびに焼減が生じるので注意が必要です。リヒト材は3回程度に止めるのがよいでしょう。

写真 スケールの付いた観察品

写真 スケールを除去した観察品